First- and second-order phase transitions in scale-free networks
نویسندگان
چکیده
منابع مشابه
Rounding of first-order phase transitions and optimal cooperation in scale-free networks.
We consider the ferromagnetic large- q state Potts model in complex evolving networks, which is equivalent to an optimal cooperation problem, in which the agents try to optimize the total sum of pair cooperation benefits and the supports of independent projects. The agents are found to be typically of two kinds: A fraction of m (being the magnetization of the Potts model) belongs to a large coo...
متن کاملSecond Order Phase Transitions
summing the Boltzmann factor over all spin configurations {si}. The enumeration of all configurations cannot be done for d ≥ 3, and although possible in d = 2 is extremely hard there as well (a problem solved by Onsager). We will use an approximate solution technique known as mean field theory. Last term we solved the problem of noninteracting spins in a magnetic field described by the Hamilton...
متن کاملSimultaneous first- and second-order percolation transitions in interdependent networks.
In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that may lead to a total collapse of the whole system in the form of an abrupt first-order transition. When the fraction of initial failed nodes 1-p reaches criticality p = p(c), the abrupt collapse occurs by spontaneous cascading failures. At this stage, the giant component decreases slo...
متن کاملDynamics of Random Networks: Connectivity and First Order Phase Transitions
The connectivity of individual neurons of large neural networks determine both the steady state activity of the network and its answer to external stimulus. Highly diluted random networks have zero activity. We show that increasing the network connectivity the activity changes discontinuously from zero to a finite value as a critical value in the connectivity is reached. Theoretical arguments a...
متن کاملQuantum first order phase transitions
The scaling theory of critical phenomena has been successfully extended for classical first order transitions even though the correlation length does not diverge in these transitions. In this paper we apply the scaling ideas to quantum first order transitions. The usefulness of this approach is illustrated treating the problems of a superconductor coupled to a gauge field and of a biquadratic H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2002
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.66.036140